Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Qing-Wei Wang,^a Xiu-Mei Li,^b* Guang-Gang Gao^a and Lin-Fang Shi^a

^aDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China, and ^bDepartment of Chemistry, Tonghua Teachers College, Tonghua 134002, People's Republic of China

Correspondence e-mail: lixm20032006@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.021 wR factor = 0.056 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography

All rights reserved

Di- μ -succinato- $\kappa^4 O:O'$ -bis[diaqua(1,10phenanthroline- $\kappa^2 N, N'$)cadmium(II)] dihydrate

In the centrosymmetric title compound, $[Cd_2(C_4H_4O_4)_2 \cdot (C_{12}H_8N_2)_2(H_2O)_4] \cdot 2H_2O$, the Cd^{II} atom is six-coordinated in an octahedral environment by two N atoms from one 1,10phenanthroline, two O atoms from two different succinate and two water molecules. The crystal structure features $O-H\cdots O$ hydrogen bonds between carboxylate O atoms and water molecules as well as $\pi-\pi$ stacking interactions between phenanthrolines.

Comment

Metal–organic complexes show a variety of supramolecular architectures (Eddaoudi *et al.*, 2001) and metal succinates are one such class. The succinate anion can connect metal ions to form one-, two- and three-dimensional supramolecular structures (Zheng *et al.*, 2000; Padmanabhan *et al.*, 2005; Ghoshal *et al.*, 2004). 1,10-Phenanthroline in its complexes gives rise to π – π interactions (Chen & Liu, 2002). These two features are combined in the dinuclear title compound, (I).

(I)

Experimental

Compound (I) was prepared from a mixture of $Cd(CH_3COO)_2$ (0.133 g, 0.5 mmol), H_2suc (0.118 g, 1.0 mmol), phen (0.099 g, 0.5 mmol) and H_2O (18 ml) in a 30 ml Teflon-lined autoclave under autogenous pressure at 453 K for 3 d. After cooling to room

metal-organic papers

·2H₂O

Received 16 November 2006 Accepted 17 November 2006

metal-organic papers

temperature, pale-yellow crystals suitable for X-ray structure analysis were obtained. Analysis calculated for $C_{32}H_{36}Cd_2N_4O_{14}$: C 72.7, H 5.1, N 14.1%; found: C 72.5, H 4.8, N 113.9%.

Crystal data

$$\begin{split} & [\mathrm{Cd}_2(\mathrm{C}_4\mathrm{H}_4\mathrm{O}_4)_2(\mathrm{C}_{12}\mathrm{H}_8\mathrm{N}_2)_2^{-r} \\ & (\mathrm{H}_2\mathrm{O})_4]\cdot 2\mathrm{H}_2\mathrm{O} \\ & M_r = 925.45 \\ & \mathrm{Triclinic}, \ P\overline{1} \\ & a = 8.1775 \ (16) \ \mathring{A} \\ & b = 8.4059 \ (17) \ \mathring{A} \\ & c = 13.064 \ (3) \ \mathring{A} \\ & \alpha = 95.13 \ (3)^{\circ} \\ & \beta = 104.18 \ (3)^{\circ} \end{split}$$

Data collection

Bruker APEX CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SAINT*; Bruker, 1998) $T_{\min} = 0.661, T_{\max} = 0.755$

Refinement

Table 1

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.056$ S = 1.13 3670 reflections 259 parameters H atoms treated by a mixture of independent and constrained refinement $\gamma = 104.86 (3)^{\circ}$ $V = 830.4 (4) Å^3$ Z = 1 $D_x = 1.851 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 1.36 \text{ mm}^{-1}$ T = 292 (2) KBlock, pale yellow $0.27 \times 0.23 \times 0.21 \text{ mm}$

5179 measured reflections 3670 independent reflections 3585 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.011$ $\theta_{\text{max}} = 28.3^{\circ}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0333P)^2 \\ &+ 0.2504P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.003 \\ \Delta\rho_{\text{max}} &= 0.36 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.91 \text{ e } \text{ Å}^{-3} \end{split}$$

Cd1-N2	2.3661 (16)	Cd1 - O2W	2.4204 (18)	
Cd1-O1	2.2536 (15)	Cd1-O3 ⁱ	2.2567 (16)	
$O1$ $Cd1$ $O3^{i}$	110 17 (6)	N2 Cd1 $O1W$	157.66 (6)	
O1-Cd1-N2	95.59 (6)	N1-Cd1-O1W	86.82 (6)	
O3 ⁱ -Cd1-N2	116.03 (6)	O1-Cd1-O2W	157.09 (7)	
O1-Cd1-N1	87.23 (6)	$O3^i - Cd1 - O2W$	79.63 (7)	
O3 ⁱ -Cd1-N1	159.65 (6)	N2-Cd1-O2W	98.41 (7)	
N2-Cd1-N1	70.84 (6)	N1-Cd1-O2W	80.39 (7)	
O1-Cd1-O1W	83.12 (6)	O1W-Cd1-O2W	77.04 (7)	
$O3^i - Cd1 - O1W$	84.98 (6)			

Cd1 - O1W

Symmetry code: (i) -x, -y + 1, -z + 1.

Table 2		
Hydrogen-bond geometry	(Å,	°)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W-HW12···O2 ⁱⁱ	0.82 (3)	1.92 (3)	2.733 (2)	172 (3)
$O1W - HW11 \cdots O3^{iii}$	0.76 (4)	2.16 (4)	2.855 (3)	153 (3)
O2W−HW21···O3 ⁱⁱⁱ	0.77 (3)	2.13 (3)	2.885 (3)	169 (3)
$O2W - HW22 \cdots O3W^{iv}$	0.78 (3)	1.94 (3)	2.721 (3)	173 (3)
O3W−HW31···O2	0.84 (4)	1.94 (4)	2.759 (2)	163 (3)
O3W−HW32···O4 ⁱⁱ	0.86 (3)	1.92 (3)	2.777 (2)	171 (3)

Symmetry codes: (ii) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z; (iv) x - 1, y - 1, z.

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The H

Figure 1

The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, 1 - y, 1 - z.]

Figure 2

2.3812 (15)

View of the two-dimensional layer, formed via $\pi - \pi$ stacking and hydrogen-bond interactions (dashed lines), along the *b* axis. H atoms have been omitted.

atoms of the water molecules were located in a difference Fourier map and were refined freely.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

We thank Professors Ning-Hai Hu and Heng-Qing Jia of Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, for supporting this work.

References

Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J. 8, 4811-4817.

- Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.
- Ghoshal, D., Maji, T. K., Mostafa, G., Sain, S., Lu, T. H., Ribas, J., Zangrando, E. & Chaudhuri, R. (2004). *Dalton Trans.* pp. 1687–1695.
- Padmanabhan, M., Kumary, S. M., Huang, X. Y. & Li, initials? (2005). *Inorg. Chim. Acta*, **358**, 3537–3544.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zheng, Y. Q., Sun, J. & Lin, J. L. (2000). Z. Anorg. Allg. Chem. 626, 1501–1504.